INSTALLATION, OPERATION, AND MAINTENANCE MANUAL WITH PARTS LIST **80 SERIES PUMPS** **MODEL** 88B2-F5L The engine exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects or other reproductive harm. #### **TABLE OF CONTENTS** | INTRODUCTION | PAGE I – 1 | |--|--------------------------| | INSTALLATION – SECTION B Pump Dimensions PREINSTALLATION INSPECTION Battery Specifications And Installation POSITIONING PUMP Lifting Mounting SUCTION AND DISCHARGE PIPING Materials Line Configuration Connections to Pump Gauges SUCTION LINES Fittings Strainers Sealing Suction Lines in Sumps Suction Line Positioning DISCHARGE LINES Siphoning Valves Bypass Lines ALIGNMENT DOPERATION — SECTION C PRIMING STARTING OPERATION Lines With a Bypass Lies Without a Bypass Lieskage Liquid Temperature And Overheating Strainer Check Pump Vacuum Check STOPPING Cold Weather Preservation BEARING TEMPERATURE CHECK TROUBLESHOOTING — SECTION D | PAGE A - 1 | | INSTALLATION - SECTION B | PAGE B – 1 | | Pump Dimensions | PAGE B - 1 | | PREINSTALLATION INSPECTION | PAGE B - 1 | | Battery Specifications And Installation | PAGE B - 2 | | POSITIONING PUMP | PAGE B - 2 | | Lifting | PAGE B - 2 | | Mounting | PAGE B - 2 | | | PAGE B - 3 | | Materials | PAGE B - 3 | | | PAGE B - 3 | | • | PAGE B - 3 | | · · · · · · · · · · · · · · · · · · · | PAGE B - 3 | | | PAGE B - 4 | | | PAGE B - 4 | | , . | PAGE B - 4 | | | PAGE B - 4 | | • • | PAGE B - 5
PAGE B - 5 | | ALIGNWENT | PAGE D - 5 | | OPERATION – SECTION C | PAGE C - 1 | | PRIMING | PAGE C - 1 | | STARTING | PAGE C - 2 | | OPERATION | PAGE C - 2 | | Lines With a Bypass | PAGE C - 2 | | Lines Without a Bypass | PAGE C - 2 | | Leakage | PAGE C - 2 | | Liquid Temperature And Overheating | PAGE C - 2 | | Strainer Check | PAGE C - 2 | | Pump Vacuum Check | PAGE C - 3 | | STOPPING | PAGE C - 3 | | Cold Weather Preservation | PAGE C - 3 | | BEARING TEMPERATURE CHECK | PAGE C - 3 | | TROUBLESHOOTING – SECTION D | PAGE D - 1 | | PUMP MAINTENANCE AND REPAIR - SECTION E | PAGE E – 1 | | STANDARD PERFORMANCE CURVE | PAGE E – 1 | | Pump Model | PAGE E – 3 | ## TABLE OF CONTENTS (continued) | Pump End Assembly | PAGE E - 5 | |--|--------------------| | Drive Assembly | | | PUMP AND SEAL DISASSEMBLY AND REASSEMBLY | PAGE E - 7 | | Suction Check Valve Removal | PAGE E - 7 | | Pump Casing and Wear Plate Removal | PAGE E - 7 | | Impeller Removal | PAGE E - 8 | | Seal Removal | PAGE E - 8 | | Separating Intermediate And Drive Assembly From Engine | PAGE E - 8 | | Shaft and Bearing Removal and Disassembly | PAGE E - 8 | | Shaft and Bearing Reassembly and Installation | PAGE E - 9 | | Securing Intermediate And Drive Assembly To Engine | PAGE E - 10 | | Seal Reassembly and Installation | PAGE E - 11 | | Impeller Installation | PAGE E - 13 | | Pump Casing and Wear Plate Installation | PAGE E - 13 | | Suction Check Valve Installation | PAGE E - 13 | | Final Pump Reassembly | PAGE E - 13 | | LUBRICATION | PAGE E - 14 | | Seal Assembly | PAGE E - 14 | | Bearings | PAGE E - 14 | | Figure | PAGE E - 15 | #### INTRODUCTION This Installation, Operation, and Maintenance manual is designed to help you achieve the best performance and longest life from your Gorman-Rupp pump. This pump is an 80 Series, semi-open impeller, self-priming centrifugal model with a suction check valve. The pump is designed for handling most non-volatile, non-flammable liquids containing specified entrained solids. It is powered by an air-cooled Deutz diesel engine, model F5L-912D. The basic material of construction for all wetted parts is gray iron and steel. If there are any questions regarding the pump or its application which are not covered in this manual or in other literature accompanying this unit, please contact your Gorman-Rupp distributor, or write: The Gorman-Rupp Company P.O. Box 1217 Mansfield, Ohio 44901–1217 or Gorman-Rupp of Canada Limited 70 Burwell Road St. Thomas, Ontario N5P 3R7 For information or technical assistance on the engine, contact the engine manufacturer's local dealer or representative. The following are used to alert maintenance personnel to procedures which require special attention, to those which could damage equipment, and to those which could be dangerous to personnel: Immediate hazards which WILL result in severe personal injury or death. These instructions describe the procedure required and the injury which will result from failure to follow the procedure. Hazards or unsafe practices which COULD result in severe personal injury or death. These instructions describe the procedure required and the injury which could result from failure to follow the procedure. Hazards or unsafe practices which COULD result in minor personal injury or product or property damage. These instructions describe the requirements and the possible damage which could result from failure to follow the procedure. #### NOTE Instructions to aid in installation, operation, and maintenance, or which clarify a procedure. INTRODUCTION PAGE I – 1 | | · | | | |--|---|--|--| #### **SAFETY - SECTION A** This information applies to 80 Series Engine-Driven pumps. Refer to the manual accompanying the engine before attempting to begin operation. Before attempting to open or service the pump: - 1. Familiarize yourself with this manual. - 2. Shut down the engine and disconnect the positive battery cable to ensure that the pump will remain inoperative. - 3. Allow the pump to completely cool if overheated. - 4. Check the temperature before opening any covers, plates, or plugs. - 5. Close the suction and discharge valves. - 6. Vent the pump slowly and cautiously. - 7. Drain the pump. This pump is designed to handle most non-volatile, non-flammable liquids containing specified entrained solids. Do not attempt to pump volatile, corrosive, or flammable materials, or any liquids which may damage the pump or endanger personnel as a result of pump failure. Use lifting and moving equipment in good repair and with adequate capacity to prevent injuries to personnel or dam- age to equipment. The bail is intended for use in lifting the pump assembly only. Suction and discharge hoses and piping must be removed from the pump before lifting. After the pump has been positioned, make certain that the pump and all piping or hose connections are tight, properly supported and secure before operation. Do not operate the pump against a closed discharge valve for long periods of time. If operated against a closed discharge valve, pump components will deteriorate, and the liquid could come to a boil, build pressure, and cause the pump casing to rupture or explode. Do not remove plates, covers, gauges, pipe plugs, or fittings from an over-heated pump. Vapor pressure within the pump can cause parts being disengaged to be ejected with great force. Allow the pump to cool before servicing. Do not operate an internal combustion engine in an explosive atmosphere. When operating internal combustion engines in an enclosed area, make certain that exhaust fumes are piped to the outside. These fumes contain carbon SAFETY PAGE A – 1 monoxide, a deadly gas that is colorless, tasteless, and odorless. Fuel used by internal combustion engines presents an extreme explosion and fire hazard. Make certain that all fuel lines are securely connected and free of leaks. Never refuel a hot or running engine. Avoid overfilling the fuel tank. Always use the correct type of fuel. Never tamper with the governor to gain more power. The governor establishes safe operating limits that should not be exceeded. The maximum continuous operating speed for this pump is 2150 RPM. PAGE A – 2 SAFETY INSTALLATION - SECTION B #### Review all SAFETY information in Section A. Since pump installations are seldom identical, this section offers only general recommendations and practices required to inspect, position, and arrange the pump and piping. Most of the information pertains to a standard static lift application where the pump is positioned above the free level of liquid to be pumped. If installed in a **flooded suction application** where the liquid is supplied to the pump under pressure, some of the information such as mounting, line configuration, and priming must be tailored to the specific application. Since the pressure supplied to the pump is critical to performance and safety, **be sure** to limit the incoming pressure to 50% of the maximum permissible operating pressure as shown on the pump performance curve. (See Section E, Page 1.) If the pump is fitted with a Gorman-Rupp double grease lubricated seal, the maximum incoming pressure must be reduced to 10 p.s.i. For further assistance, contact your Gorman-Rupp distributor or the Gorman-Rupp Company. #### **Pump Dimensions** See Figure 1 for the approximate physical dimensions of this pump. #### **OUTLINE DRAWING** Figure 1. Pump Model 88B2-F5L #### PREINSTALLATION INSPECTION The pump assembly was inspected and tested before shipment from the factory. Before installation, inspect the pump for damage which may have occurred during shipment. Check as follows: - a. Inspect the pump and engine for cracks, dents, damaged threads, and other obvious damage. - b.
Check for and tighten loose attaching hardware. Since gaskets tend to shrink after dry- INSTALLATION PAGE B – 1 ing, check for loose hardware at mating surfaces. - c. Carefully read all tags, decals, and markings on the pump assembly, and perform all duties indicated. - d. Check levels and lubricate as necessary. Refer to LUBRICATION in the MAINTENANCE AND REPAIR section of this manual and perform duties as instructed. - e. If the pump and engine have been stored for more than 12 months, some of the components or lubricants may have exceeded their maximum shelf life. These must be inspected or replaced to ensure maximum pump service. If the maximum shelf life has been exceeded, or if anything appears to be abnormal, contact your Gorman-Rupp distributor or the factory to determine the repair or updating policy. **Do not** put the pump into service until appropriate action has been taken. #### **Battery Specifications And Installation** Unless otherwise specified on the pump order, the engine battery was **not** included with the unit. Refer to the following specifications when selecting a battery. **Table 1. Battery Specifications** | Voltage | Cold
Crank
Amps
@ 0°F | Reserve
Capacity
@80°F
(Minutes) | Amp/
Hr.
Rating | Approx.
Overall
Dims.
(Inches) | |----------|--------------------------------|---|-----------------------|---| | 12 Volts | 960-975 | 365 | 175 | 20.5L
X
8.75W
X
9.75H | Refer to the information accompanying the battery and/or electrolyte solution for activation and charging instructions. Before installing the battery, clean the positive and negative cable connectors, and the battery terminals. Secure the battery by tightening the holddown brackets. The terminals and clamps may be coated with petroleum jelly to retard corro- sion. Connect and tighten the positive cable first, then the negative cable. #### **POSITIONING PUMP** Use lifting and moving equipment in good repair and with adequate capacity to prevent injuries to personnel or damage to equipment. The bail is intended for use in lifting the pump assembly only. Suction and discharge hoses and piping must be removed from the pump before lifting. #### Lifting Use lifting equipment with a capacity of at least 12,120 pounds (5500 kg). This pump weighs approximately 2,424 pounds (1100 kg), not including the weight of accessories and optional wheel kit. Customer installed equipment such as suction and discharge piping must be removed before attempting to lift. The pump assembly can be seriously damaged if the cables or chains used to lift and move the unit are improperly wrapped around the pump. #### Mounting Locate the pump in an accessible place as close as practical to the liquid being pumped. Level mounting is essential for proper operation. The pump may have to be supported or shimmed to provide for level operation or to eliminate vibration. If the pump has been mounted on a moveable base, make certain the base is stationary by setting the brake and blocking the wheels before attempting to operate the pump. To ensure sufficient lubrication and fuel supply to the engine, **do not** position the pump and engine more than 15° off horizontal for continuous operation. The pump and engine may be positioned up to 30° off horizontal for **intermittent operation only**; however, the engine manufacturer should be consulted for continuous operation at angles greater than 15°. #### **SUCTION AND DISCHARGE PIPING** Pump performance is adversely effected by increased suction lift, discharge elevation, and friction losses. See the performance curve and operating range shown on Page E-1 to be sure your overall application allows pump to operate within the safe operation range. #### **Materials** Either pipe or hose maybe used for suction and discharge lines; however, the materials must be compatible with the liquid being pumped. If hose is used in suction lines, it must be the rigid-wall, reinforced type to prevent collapse under suction. Using piping couplings in suction lines is not recommended. #### Line Configuration Keep suction and discharge lines as straight as possible to minimize friction losses. Make minimum use of elbows and fittings, which substantially increase friction loss. If elbows are necessary, use the long-radius type to minimize friction loss. #### **Connections to Pump** Before tightening a connecting flange, align it exactly with the pump port. Never pull a pipe line into place by tightening the flange bolts and/or couplings. Lines near the pump must be independently supported to avoid strain on the pump which could cause excessive vibration, decreased bearing life, and increased shaft and seal wear. If hose-type lines are used, they should have adequate support to secure them when filled with liquid and under pressure. #### Gauges Most pumps are drilled and tapped for installing discharge pressure and vacuum suction gauges. If these gauges are desired for pumps that are not tapped, drill and tap the suction and discharge lines not less than 18 inches (457,20 mm) from the suction and discharge ports and install the lines. Installation closer to the pump may result in erratic readings. #### **SUCTION LINES** To avoid air pockets which could affect pump priming, the suction line must be as short and direct as possible. When operation involves a suction lift, the line must always slope upward to the pump from the source of the liquid being pumped; if the line slopes down to the pump at any point along the suction run, air pockets will be created. #### **Fittings** Suction lines should be the same size as the pump inlet. If reducers are used in suction lines, they should be the eccentric type, and should be installed with the flat part of the reducers uppermost to avoid creating air pockets. Valves are not normally used in suction lines, but if a valve is used, install it with the stem horizontal to avoid air pockets. #### **Strainers** If a strainer is furnished with the pump, be certain to use it; any spherical solids which pass through a strainer furnished with the pump will also pass through the pump itself. If a strainer is not furnished with the pump, but is installed by the pump user, make certain that the total area of the openings in the strainer is at least three or four times the cross section of the suction line, and that the openings will not permit passage of solids larger than the solids handling capability of the pump. This pump is designed to handle up to 2 1/8 inch (53,9 mm) diameter spherical solids. #### Sealing Since even a slight leak will affect priming, head, and capacity, especially when operating with a INSTALLATION PAGE B – 3 high suction lift, all connections in the suction line should be sealed with pipe dope to ensure an airtight seal. Follow the sealant manufacturer's recommendations when selecting and applying the pipe dope. The pipe dope should be compatible with the liquid being pumped. #### **Suction Lines In Sumps** If a single suction line is installed in a sump, it should be positioned away from the wall of the sump at a distance equal to 1 1/2 times the diameter of the suction line. If there is a liquid flow from an open pipe into the sump, the flow should be kept away from the suction inlet because the inflow will carry air down into the sump, and air entering the suction line will reduce pump efficiency. If it is necessary to position inflow close to the suction inlet, install a baffle between the inflow and the suction inlet at a distance 1 1/2 times the diameter of the suction pipe. The baffle will allow entrained air to escape from the liquid before it is drawn into the suction inlet. If two suction lines are installed in a single sump, the flow paths may interact, reducing the efficiency of one or both pumps. To avoid this, position the suction inlets so that they are separated by a distance equal to at least 3 times the diameter of the suction pipe. #### **Suction Line Positioning** The depth of submergence of the suction line is critical to efficient pump operation. Figure 2 shows recommended minimum submergence vs. velocity. #### NOTE The pipe submergence required may be reduced by installing a standard pipe increaser fitting at the end of the suction line. The larger opening size will reduce the inlet velocity. Calculate the required submergence using the following formula based on the increased opening size (area or diameter). Figure 2. Recommended Minimum Suction Line Submergence vs. Velocity PAGE B – 4 INSTALLATION #### DISCHARGE LINES #### Siphoning Do not terminate the discharge line at a level lower than that of the liquid being pumped unless a siphon breaker is used in the line. Otherwise, a siphoning action causing damage to the pump could result. #### Valves If a throttling valve is desired in the discharge line, use a valve as large as the largest pipe to minimize friction losses. Never install a throttling valve in a suction line. With high discharge heads, it is recommended that a throttling valve and a system check valve be installed in the discharge line to protect the pump from excessive shock pressure and reverse rotation when it is stopped. If the application involves a high discharge head, gradually close the discharge throttling valve before stopping the pump. #### **Bypass Lines** If a system check valve is used due to high discharge head, it may be necessary to vent trapped air from the top of the pump during the priming process. This may be accomplished by installing a bypass line from the top of the pump, back to the source of liquid. The end of the bypass line must be submerged. The line must be large enough to prevent clogging, but not so large as to affect pump discharge capacity. #### **ALIGNMENT** The alignment of the pump and the engine is critical for trouble-free mechanical operation. See Section E, Securing Intermediate And Drive
Assembly To Engine for detailed information. INSTALLATION PAGE B – 5 | , | | | | |---|--|--|--| #### **OPERATION - SECTION C** Review all SAFETY information in Section A. Follow the instructions on all tags, labels and decals attached to the pump. This pump is designed to handle most non-volatile, non-flammable liquids containing specified entrained solids. Do not attempt to pump volatile, corrosive, or flammable liquids which may damage the pump or endanger personnel as a result of pump failure. Never tamper with the governor to gain more power. The governor establishes safe operating limits that should not be exceeded. The maximum continuous operating speed for this pump is 2150 RPM. #### **PRIMING** Install the pump and piping as described in INSTAL-LATION. Make sure that the piping connections are tight, and that the pump is securely mounted. Check that the pump is properly lubricated (see LUBRICA-TION in MAINTENANCE AND REPAIR). This pump is self priming, but the pump should never be operated unless there is liquid in the pump casing. Never operate this pump unless there is liquid in the pump casing. The pump will not prime when dry. Extended operation of a dry pump will destroy the seal assembly. Add liquid to the pump casing when: - 1. The pump is being put into service for the first time. - 2. The pump has not been used for a considerable length of time. - The liquid in the pump casing has evaporated. When installed in a flooded suction application, simply open the system valves and permit the incoming liquid to evacuate the air. After the pump and piping system have completely filled, evacuate any remaining air pockets in the pump or suction line by loosening pipe plug or opening bleeder valves. Once the pump casing has been filled, the pump will prime and reprime as necessary. After filling the pump casing, reinstall and tighten the fill plug. Do not attempt to operate the pump unless all connecting piping is securely installed. Otherwise, liquid in the pump forced out under pressure could cause injury to personnel. To fill the pump, remove the pump casing fill cover or fill plug in the top of the casing, and add clean liquid until the casing is filled. Replace the fill cover or fill plug before operating the pump. OPERATION PAGE C – 1 #### STARTING Consult the operations manual furnished with the engine. #### **OPERATION** Pump speed and operating condition points must be within the continuous performance range shown on the curve. (See Section E, Page 1.) #### Lines With a Bypass Close the discharge throttling valve (if so equipped) so that the pump will not have to prime against the weight of the liquid in the discharge line. Air from the suction line will be discharged through the bypass line back to the wet well during the priming cycle. When the pump is fully primed and liquid is flowing steadily from the bypass line, open the discharge throttling valve. Liquid will then continue to circulate through the bypass line while the pump is in operation. #### **Lines Without a Bypass** Open all valves in the discharge line and start the power source. Priming is indicated by a positive reading on the discharge pressure gauge or by a quieter operation. The pump may not prime immediately because the suction line must first fill with liquid. If the pump fails to prime within five minutes, stop it and check the suction line for leaks. After the pump has been primed, partially close the discharge line throttling valve in order to fill the line slowly and guard against excessive shock pressure which could damage pipe ends, gaskets, sprinkler heads, and any other fixtures connected to the line. When the discharge line is completely filled, adjust the throttling valve to the required flow rate. Do not operate the pump against a closed discharge throttling valve for long periods of time. If operated against a closed discharge throttling valve, pump components will deteriorate, and the liquid could come to a boil, build pressure, and cause the pump casing to rupture or explode. #### Leakage No leakage should be visible at pump mating surfaces, or at pump connections or fittings. Keep all line connections and fittings tight to maintain maximum pump efficiency. #### **Liquid Temperature And Overheating** The **maximum** liquid temperature for this pump is 110° F (43°C). Do not apply it at a higher operating temperature. Overheating can occur if operated with the valves in the suction or discharge lines closed. Operating against closed valves could bring the liquid to a boil, build pressure, and cause the pump to rupture or explode. If overheating occurs, stop the pump and allow it to cool before servicing it. Refill the pump casing with cool liquid. Allow an over-heated pump to cool before servicing. Do not remove plates, covers, gauges, or fittings from an overheated pump. Liquid within the pump can reach boiling temperatures, and vapor pressure within the pump can cause parts being disengaged to be ejected with great force. After the pump cools, drain the liquid from the pump by removing the casing drain plug. Use caution when removing the plug to prevent injury to personnel from hot liquid. #### **Strainer Check** If a suction strainer has been shipped with the pump or installed by the user, check the strainer regularly, and clean it as necessary. The strainer should also PAGE C – 2 OPERATION be checked if pump flow rate begins to drop. If a vacuum suction gauge has been installed, monitor and record the readings regularly to detect strainer blockage. Never introduce air or steam pressure into the pump casing or piping to remove a blockage. This could result in personal injury or damage to the equipment. If backflushing is absolutely necessary, liquid pressure must be limited to 50% of the maximum permissible operating pressure shown on the pump performance curve. (See Section E, Page 1.) If the pump is fitted with a Gorman-Rupp double grease lubricated seal, the maximum incoming pressure must be reduced to 10 p.s.i. #### **Pump Vacuum Check** With the pump inoperative, install a vacuum gauge in the system, using pipe dope on the threads. Block the suction line and start the pump. At operating speed the pump should pull a vacuum of 20 inches (508 mm) or more of mercury. If it does not, check for air leaks in the seal, gasket, or discharge valve. Open the suction line, and read the vacuum gauge with the pump primed and at operation speed. Shut off the pump. The vacuum gauge reading will immediately drop proportionate to static suction lift, and should then stabilize. If the vacuum reading falls off rapidly after stabilization, an air leak exists. Before checking for the source of the leak, check the point of installation of the vacuum gauge. #### STOPPING Never halt the flow of liquid suddenly. If the liquid being pumped is stopped abruptly, damaging shock waves can be transmitted to the pump and piping system. Close all connecting valves slowly. On engine driven pumps, reduce the throttle speed slowly and allow the engine to idle briefly before stopping. If the application involves a high discharge head, gradually close the discharge throttling valve before stopping the pump. After stopping the pump, switch off the engine ignition and remove the key to ensure that the pump will remain inoperative. #### **Cold Weather Preservation** In below freezing conditions, drain the pump to prevent damage from freezing. Also, clean out any solids by flushing with a hose. Operate the pump for approximately one minute; this will remove any remaining liquid that could freeze the pump rotating parts. If the pump will be idle for more than a few hours, or if it has been pumping liquids containing a large amount of solids, drain the pump, and flush it thoroughly with clean water. To prevent large solids from clogging the drain port and preventing the pump from completely draining, insert a rod or stiff wire in the drain port, and agitate the liquid during the draining process. Clean out any remaining solids by flushing with a hose. #### BEARING TEMPERATURE CHECK Bearings normally run at higher than ambient temperatures because of heat generated by friction. Temperatures up to 160°F (71°C) are considered normal for bearings, and they can operate safely to at least 180°F (82°C). Checking bearing temperatures by hand is inaccurate. Bearing temperatures can be measured accurately by placing a contact-type thermometer against the housing. Record this temperature for future reference. A sudden increase in bearing temperatures is a warning that the bearings are at the point of failing to operate properly. Make certain that the bearing lubricant is of the proper viscosity and at the correct level (see **LUBRICATION** in Section E). Bearing overheating can also be caused by shaft misalignment and/or excessive vibration. When pumps are first started, the bearings may seem to run at temperatures above normal. Continued operation should bring the temperatures down to normal levels. OPERATION PAGE C - 3 | • | | | | |---|--|--|--| OM-02301-04 #### TROUBLESHOOTING - SECTION D Review all SAFETY information in Section A. Before attempting to open or service the pump: - 1. Familiarize yourself with this manual. - 2. Shut down the engine and disconnect the positive battery cable to ensure that the pump will remain inoperative. - 3. Allow the pump to completely cool if overheated. - 4. Check the temperature before opening any covers, plates, or plugs. - 5. Close the suction and discharge valves. - 6. Vent the pump slowly and cautiously. - 7. Drain the pump. | TROUBLE | POSSIBLE CAUSE | PROBABLE REMEDY | |--------------------------------|---
--| | PUMP FAILS TO | Not enough liquid in casing. | Add liquid to casing. See PRIMING. | | PRIME | Suction check valve contaminated or damaged. | Clean or replace check valve. | | | Air leak in suction line. | Correct leak. | | | Lining of suction hose collapsed. | Replace suction hose. | | | Leaking or worn seal or pump gasket. | Check pump vacuum. Replace
leaking or worn seal or gasket. | | | Suction lift or discharge head too high. | Check piping installation and install bypass line if needed. See INSTALLATION. | | | Strainer clogged. | Check strainer and clean if necessary. | | | Suction check valve or foot valve clogged or binding. | Clean valve. | | PUMP STOPS OR | Air leak in suction line. | Correct leak. | | FAILS TO DELIVER RATED FLOW OR | Lining of suction hose collapsed. | Replace suction hose. | | PRESSURE | Leaking or worn seal or pump gasket. | Check pump vacuum. Replace
leaking or worn seal or gasket. | | | Strainer clogged. | Check strainer and clean if necessary. | TROUBLESHOOTING PAGE D - 1 | TROUBLE | POSSIBLE CAUSE | PROBABLE REMEDY | | |-----------------------------------|---|--|--| | PUMP STOPS OR
FAILS TO DELIVER | Suction intake not submerged at proper level or sump too small. | Check installation and correct submergence as needed. | | | RATED FLOW OR PRESSURE (cont.) | Impeller or other wearing parts worn or damaged. | Replace worn or damaged parts.
Check that impeller is properly
centered and rotates freely. | | | | Impeller clogged. | Free impeller of debris. | | | | Pump speed too slow. | Check engine output; consult engine operation manual. | | | | Suction lift or discharge head too high. | Check piping installation and install bypass line if needed. See INSTALLATION. | | | PUMP REQUIRES | Pump speed too high. | Check engine output. | | | TOO MUCH
POWER | Discharge head too low. | Adjust discharge valve. | | | POWER | Liquid solution too thick. | Dilute if possible. | | | | Bearing(s) frozen. | Disassemble pump and check bearing(s). | | | PUMP CLOGS | Liquid solution too thick. | Dilute if possible. | | | FREQUENTLY | Discharge flow too slow. | Open discharge valve fully to in—
crease flow rate, and run power
source at maximum governed
speed. | | | · | Discharge line clogged or restricted; hose kinked. | Check discharge lines; straighten hose. | | | | Suction check valve or foot valve clogged or binding. | Clean valve. | | | EXCESSIVE NOISE | Cavitation in pump. | Reduce suction lift and/or friction losses in suction line. Record vacuum and pressure gauge readings and consult local representative or factory. | | | | Pumping entrained air. | Locate and eliminate source of air bubble. | | | | Pump or drive not securely mounted. | Secure mounting hardware. | | | | Impeller clogged or damaged. | Clean out debris; replace damaged parts. | | | BEARINGS
RUN TOO HOT | Bearing temperature is high, but within limits. | Check bearing temperature regularly to monitor any increase. | | | | Low or incorrect lubricant | Check for proper type and level of lubricant. | | | | Suction and discharge lines not properly supported. | Check piping installation for proper support. | | | | Drive misaligned. | Align drive properly. | | PAGE D – 2 TROUBLESHOOTING #### **PUMP MAINTENANCE AND REPAIR - SECTION E** MAINTENANCE AND REPAIR OF THE WEARING PARTS OF THE PUMP WILL MAINTAIN PEAK OPER-ATING PERFORMANCE. * STANDARD PERFORMANCE FOR PUMP MODEL 88B2-F5L * Based on 70° F (21° C) clear water at sea level with minimum suction lift. Since pump installations are seldom identical, your performance may be different due to such factors as viscosity, specific gravity, elevation, temperature, and impeller trim. If your pump serial number is followed by an "N", your pump is **NOT** a standard production model. Contact the Gorman-Rupp Company to verify performance or part numbers. Pump speed and operating condition points must be within the continuous performance range shown on the curve. #### **SECTION DRAWING** Figure 1. Pump Model 88B2-F5L OM-02301-04 #### PARTS LIST Pump Model 88B2-F5L (From S/N 1037082 up) If your pump serial number is followed by an "N", your pump is **NOT** a standard production model. Contact the Gorman-Rupp Company to verify part numbers. | ITEN
NO. | PART NAME | PART
NUMBER | MAT'L
CODE | QTY | ITEM PART NAME
NO. | PART
NUMBER | MAT'L
CODE | QTY | |-------------|--------------------|-----------------|---------------|-----|-----------------------|----------------|---------------|-----| | 1 | PUMP END ASSY | 88B2-(SAE 4/10) | | 1 | 31 -FLAT WASHER | K06 | 15991 | 6 | | 2 | CONTROL PANEL | 29277-011 | | 1 . | 32 - CARRIAGE BOLT | AB0604 | 15991 | 6 | | 3 | TACHOMETER KIT | 48312-606 | | 1 | 33 -FLANGED HEX NUT | 21765-314 | | 6 | | | -TACHOMETER | 26861-021 | | 1 | 34 -FUEL TANK | 46711-042 | 24150 | 1 | | 4 | EXHAUST ELBOW | 31912-024 | 15990 | 1 | 35 -TANK GUARD ASSY | 34851-178 | 15080 | 1 | | 5 | WEATHER CAP | S1246 | | 1 | 36 HOSE ASSY | 46341-796 | | 1 | | 6 | HOISTING BAIL | 13351BB | 24000 | 1 | 37 MALE CONNECTOR | S1447 | | 1 | | 7 | FUEL RETURN LINE | 11308F | | 1 | 38 HEX HD CAPSCREW | B1017 | 15991 | 2 | | 8 | HOSE CLAMP | 26518-641 | | 2 | 39 LOCKWASHER | J10 | 15991 | 2 | | 9 | HOSE BARB FITTING | 26523-443 | | 1 | 40 HEX NUT | D10 | 15991 | 2 | | 10 | MALE CONNECTOR | 26523-382 | | 1 | 41 HEX HD CAPSCREW | B1006 | 15991 | 8 | | 11 | REDUCER ELBOW | Q0402 | 11999 | 1 | 42 LOCKWASHER | J10 | 15991 | 8 | | 12 | FUEL RETURN LINE | 14294 | 24030 | 1 | 43 HEX NUT | D10 | 15991 | 8 | | 13 | WARNING DECAL | 2613FE | | 1 | 44 HEX HD CAPSCREW | B1007 | 15991 | 4 | | 14 | MUFFLER GUARD ASSY | | | 1 . | 45 LOCKWASHER | J10 | 15991 | 4 | | 15 | DEUTZ F5L ENGINE | 29217-061 | | 1 | 46 HEX NUT | D10 | 15991 | 4 | | 16 | POS BATTERY CABLE | 47311-114 | | 1 | 47 COMBINATION BASE | 41566-684 | 24150 | 1 | | 17 | BATTERY BOX ASSY | GRP40-08C | | 1 | 48 HEX HD CAPSCREW | B1209 | 15991 | 2 | | 18 | -HEX HD CAPSCREW | B0607 | 15991 | 2 | 49 LOCKWASHER | J12 | 15991 | 2 | | 19 | -FLAT WASHER | K06 | 15991 | 2 | 50 HEX NUT | D12 | 15991 | 2 | | 20 | -FLANGED HEX NUT | 21765-314 | | 2 | 51 FLAT WASHER | K12 | 15991 | 2 | | 21 | -BATTERY BOX LID | 42113-012 | 24150 | 1 | | | | _ | | 22 | -GROUND CABLE ASSY | | | 1 | NOT SHOWN: | | | | | 23 | -12V BATTERY | SEE OPTIONS LIS | т | REF | STRAINER | S2279 | | 1 | | 24 | -BATTERY TAG | 38818-506 | | 1 | BELT/FAN GUARD KIT | 48157-701 | | 1 | | 25 | -BATTERY BOX | 42431 - 030 | 24150 | 1 | CAUTION DECAL | 2613FJ | | 1 | | 26 | -FLANGED HEX NUT | 21765-314 | | 8 | CAUTION DECAL | 201010 | | • | | 27 | -STUD MOUNT | 24631 - 006 | | 4 | OPTIONAL: | | | | | | HEX HD CAPSCREW | B0604 | 15991 | 10 | | 20004 500 | | 4 | | | FLANGED HEX NUT | 21765-314 | | 10 | * 12V BATTERY | 29331-506 | | 1 | | 30 | FUEL TANK ASSY | 46711-041 | | 1 | WHEEL KIT | GRP30-248F | | 1 | ^{*} INDICATES PARTS RECOMMENDED FOR STOCK Above Serial Numbers Do Not Apply To Pumps Made In Canada. CANADIAN SERIAL NO. AND UP #### **SECTION DRAWING** Figure 2. Pump End Assembly 88B2-(SAE 4/10) DADTOLICT ### PARTS LIST Pump End Assembly 88B2-(SAE 4/10) | ITEM PART NAM
NO. | E PART
NUMBER | MAT'L
CODE | QTY | ITEM PART NAME
NO. | PART
NUMBER | MAT'L
CODE | QTY | |----------------------|-------------------|---------------|-----|-----------------------|----------------|---------------|-----| | 1 PUMP CASING | 6722 | 10010 | 1 | 32 BEARING CLOSU | RE 44 | 10010 | 1 | | 2 * IMPELLER | 2702E | 10010 | 1 | 33 STUD | C0809 | 15991 | 8 | | 3 * SEAL ASSY | GS1250 | | 1 | 34 HEX NUT | D08 | 15991 | 8 | | 4 * DISCH FLANG | E GSKT 1759G | 18000 | 1 | 35 * WEAR PLATE | 7209A | 10010 | 1 | | 5 DISCHARGE F | LANGE 1759 | 10010 | 1 | 36 STUD | C0808 | 15991 | 2 | | 6 HEX HD CAPS | CREW B1212 | 15991 | 8 | 37 LOCKWASHER | J08 | 15991 | 2 | | 7 HEX NUT | D12 | 15991 | 8 | 38 HEX NUT | D08 | 15991 | 2 | | 8 PIPE ELBOW | R0128 | 10010 | 1 | 39 CASING DRAIN P | | 10009 | 1 | | 9 PIPE NIPPLE | T0128 | 15070 | 1 | 40 NAME PLATE | 38818-024 | 13990 | 1 | | 10 DISCHARGE S | STICKER 6588BJ | | 1 | 41 DRIVE SCREW | BM#04-03 | 15990 | 4 | | 11 FILL PLUG AS | | | 1 | 42 * CHECK VLV SEAT | GSKT 7211G | 18000 | 1 | | 12 PRIMING STIC | KER 6588AH | | 1 | 43 CHECK VALVE SE | AT 7211 | 10010 | 1 | | 13 * CASING GASK | CET SET 34G | 18000 | 1 | 44 STUD | C1215 | 15991 | 8 | | 14 SEAL PLATE A | SSY 2546 | 10010 | 1 | 45 HEX NUT | D12 | 15991 | 8 | | 15 SEAL GREASE | CUP S1509 | | 1 | 46 RD HD MACH SC | REW X0404 | 17090 | 2 | | 16 GREASE CUP | INST 6588BD | | 1 | 47 SUCTION STICKE | R 6588AG | | 1 | | 17 PIPE COUPLIN | IG AE04 | 15079 | 1 | 48 CHECK VALVE AS | SSY 7214 | | 1 | | 18 HEAVY PIPE N | | 15079 | 1 | 49 -HEX HD CAPSC | REW B0604 | 17000 | 2 | | 19 BEARING GRE | | | 1 | 50 -LOCKWASHER | J06 | 17000 | 2 | | 20 INTERMEDIAT | E 36 | 10010 | 1 | 51 * -CHECK VALVE | GSKT 7217 | 19070 | 1 | | 21 * BEARING SHII | M SET 48261-031 | | 1 | 52 -VALVE WEIGHT | 7216 | 15990 | 1 | | 22 IMPELLER SH | AFT KEY N0607 | 15990 | 1 | 53 -VALVE WEIGHT | 7215 | 24000 | 1 | | 23 * IMPELLER SH | AFT 45 | 15010 | 1 | 54 SUCTION FLANG | E 1759 | 10010 | 1 | | 24 HEX HD CAPS | CREW B0604 | 15991 | 4 | 55 * SUCT FLANGE GA | ASKET 1759G | 18000 | 1 | | 25 LOCKWASHER | R J06 | 15991 | 4 | 56 PIPE PLUG | P04 | 15079 | 1 | | 26 BEARING CAP | 43X | 10010 | 1 | 57 * IMPELLER SHIM S | SET 37J | 17090 | 1 | | 27 * OUTBOARD B | RG CUP S1086 | | 1 | 58 SEAL SPACER W | ASHER 37H | 15990 | 1 | | 28 * OUTBOARD B | RG CONE S1087 | | 1 | 59 * SEAL LINER | 2205 | 14080 | REF | | 29 INTERMEDIAT | E GUARD 42381-031 | 24150 | 2 | | | 550 | | | 30 * INBOARD BRO | CUP S1086 | *** | 1 | NOT SHOWN: | | | | | 31 * INBOARD BRO |
CONE S1087 | | 1 | STRAINER | S2279 | | 1 | ^{*} INDICATES PARTS RECOMMENDED FOR STOCK #### **SECTION DRAWING** Figure 3. Drive Assembly For Pump Model 88B2-(SAE 4/10) #### **PARTS LIST** | ITEM
NO. | PART NAME | PART
NUMBER | MAT'L
CODE | QTY | |-------------|---------------------|----------------|---------------|-----| | 1 | COUPLING KIT | 48112-001 | | 1 | | 2 | -BUSHING | 24131-345 | | 1 | | 3 | -COUPLING ASSEMBLY | 44165-011 | | 1 | | 4 | -LOCKWASHER | 21171-536 | | 8 | | 5 | -SOCKET HD CAPSCREW | 22644-220 | | 8 | | 6 | HEX HD CAPSCREW | 22645-164 | | 12 | | 7 | LOCKWASHER | 21171-511 | | 12 | ### PUMP AND SEAL DISASSEMBLY AND REASSEMBLY Review all SAFETY information in Section A. Follow the instructions on all tags, label and decals attached to the pump. This pump requires little service due to its rugged, minimum-maintenance design. However, if it becomes necessary to inspect or replace the wearing parts, follow these instructions which are keyed to the sectional views (see Figures 1, 2 and 3) and the accompanying parts lists. Before attempting to service the pump, switch off the engine ignition and remove the key or take other precautions to ensure that it will remain inoperative. Close all valves in the suction and discharge lines. For engine disassembly and repair, consult the literature supplied with the engine, or contact your local Deutz engine representative. Before attempting to open or service the pump: - 1. Familiarize yourself with this manual. - Shut down the engine ignition and disconnect the positive battery cable to ensure that the pump will remain inoperative. - 3. Allow the pump to completely cool if overheated. - 4. Check the temperature before opening any covers, plates, or plugs. - 5. Close the suction and discharge valves. - 6. Vent the pump slowly and cautiously. - 7. Drain the pump. #### **Suction Check Valve Removal** #### (Figure 2) Before attempting to service the pump, remove the pump casing drain plug (39) and drain the pump. Clean and reinstall the drain plug. For access to the check valve, remove the suction piping. Remove the nuts (45) and separate the suction flange and gasket (54 and 55) from the pump casing (1). Replace the suction flange gasket as required. Disengage the machine screws (46) and pull the check valve seat (43), gasket (42) and check valve assembly (48) from the suction port. Inspect the check valve parts for wear or damage. If replacement is required, remove the hardware (49 and 50) and separate the check valve gasket (51) and weights (52 and 53). ### Pump Casing and Wear Plate Removal (Figure 2) To service the impeller (2), seal assembly (3) or the seal plate (14), the pump casing must be separated from the base and intermediate (20). See Figure 1 and remove the hardware (48, 49, 50 and 51) securing the pump casing (1) to the base (47). Support the pump casing using a suitable hoist and sling, and disengage the hardware (34) securing the pump casing to the seal plate (14) and intermediate (20). Separate the pump casing and gasket set (13) from the seal plate and the intermediate. Replace the gasket set as required. To ease reassembly, tie and tag any leveling shims used under the pump casing mounting feet. Use lifting and moving equipment in good repair and with adequate capacity to prevent injuries to personnel or damage to equipment. The bail is intended for use in lifting the pump assembly only. Suction and discharge hoses and piping must be removed from the pump before lifting. Inspect the wear plate (35), and replace if scored or worn. To remove the wear plate, disengage the hardware (37 and 38) from the wear plate studs, and pull the wear plate from the pump casing. #### **Impelier Removal** #### (Figure 2) Before removing the impeller, turn the cross arm on the automatic lubricating grease cup (15) clockwise until it rests against the cover (see Figure 5 in LU-BRICATION). This will prevent the grease in the cup from escaping when the impeller is removed. Use an impeller wrench to remove the impeller (2). If an impeller wrench is not available, place a block of wood against one of the vanes, and strike it sharply in a counterclockwise direction (when facing the impeller) with a hammer. **Be careful** not to damage the vane. When the impeller breaks loose, unscrew it from the shaft. Use caution when removing the impeller; tension on the seal spring will be released as the impeller is unscrewed. Inspect the impeller and replace it if cracked or badly wom. Slide the impeller adjusting shims (57) off the shaft. For ease of reassembly, tie and tag the shims or measure and record their thickness. #### **Seal Removal** #### (Figure 2) Make certain that the cross arm on the grease cup has been turned down against the cover before removing the seal assembly. For ease of disassembly, the seal and seal plate (14) may be removed as a single unit. Before attempting to remove the seal plate, remove the automatic grease cup and piping (15, 17 and 18). Remove the outer rotating element. Slide the seal plate, spacer sleeve, and remaining seal parts off the shaft as a unit. Slide the seal washer (58) off the shaft. Carefully remove the outer stationary seat, rotating element, packing ring, seal washer, and seal spring from the seal plate. Remove the spacer sleeve, inner seal washer, packing ring, stationary seat and rotating element. Use a stiff wire with a hooked end if necessary. Inspect the seal liner (59) for wear or grooves that could cause leakage or damage to the seal packing rings. The seal liner is secured by a press fit into the seal plate and does not normally require replacement. If replacement is required, see **Seal Installation**. If no further disassembly is required, refer to **Seal Installation**. ### Separating Intermediate And Drive Assembly From Engine #### (Figure 3) If it is necessary to separate the intermediate and drive assembly from the engine, support the intermediate using a suitable hoist and sling. Remove the hardware (6 and 7) securing the intermediate and guards (20 and 29, Figure 2) to the engine bellhousing. Separate the assemblies by pulling straight away from the engine. As the assemblies separate, the flexible portion of the coupling assembly (3) will remain on the shaft. To remove the coupling from the shaft, unscrew the two allen head setscrews from the bushing (2). Screw one of the setscrews into the puller hole on the circumference of the bushing. As the coupling and bushing separate, remove the bushing, and slide the coupling off the shaft. Remove the shaft key (22, Figure 2). It is not necessary to remove the outer ring of the coupling from the engine flywheel unless the coupling must be replaced. To remove the ring, disengage the hardware (4 and 5) securing it to the flywheel. Move the pump end to a clean, well equipped shop area for further disassembly. #### **Shaft and Bearing Removal and Disassembly** #### (Figure 2) When the pump is properly operated and maintained, the intermediate should not require disassembly. Disassemble the shaft and bearings **only** when there is evidence of wear or damage. Shaft and bearing disassembly in the field is not recommended. These operations should be performed only in a properlyequipped shop by qualified personnel. Disengage the hardware (24 and 25), and remove the bearing cap (26) and shims (21). Tie and tag the bearing shims, or measure and record their thickness for ease of reassembly. Remove the outboard bearing cup (27) from the bearing cone (28). Place a block of wood against the impeller end of the shaft (23), and tap the shaft and assembled bearings from the intermediate. **Be careful** not to damage the shaft. #### NOTE There are no provisions for draining the grease from the intermediate cavity. Place a drip pan under the intermediate before removing the shaft and bearings. Use a suitable sized dowel and an arbor (or hydraulic) press to remove the bearing closure (32) and inboard bearing cup (30) from the intermediate. After removing the shaft and bearings, clean and inspect the bearings in place as follows. To prevent damage during removal from the shaft, it is recommended that bearings be cleaned and inspected **in place**. It is **strongly** recommended that the bearings be replaced **any** time the shaft and bearings are removed. Clean the intermediate, shaft and all component parts (except the bearings) with a soft cloth soaked in cleaning solvent. Inspect the parts for wear or damage and replace as necessary. Most cleaning solvents are toxic and flammable. Use them only in a well ventilated area free from excessive heat, sparks, and flame. Read and follow all precautions printed on solvent containers. Clean the bearings thoroughly in **fresh** cleaning solvent. Dry the bearings with filtered compressed air and coat with light oil. Bearings must be kept free of all dirt and foreign material. Failure to do so will greatly shorten bearing life. **Do not** spin dry bearings. This may scratch the rollers or races, and cause premature bearing failure. Rotate the bearings by hand to check for roughness or binding and inspect the bearing rollers. If rotation is rough or the rollers are discolored, replace the bearings. The bearing tolerances provide a tight press fit onto the shaft and a snug slip fit into the bearing housing. Replace the bearing cups or cones, the shaft, or intermediate if the proper bearing fit is not achieved. If bearing replacement is required, use a bearing puller to remove the inboard and outboard bearing cones (28 and 31) from the shaft. ## Shaft and Bearing Reassembly and Installation (Figure 2) Clean the intermediate, shaft and all component parts (except the bearings) with a soft cloth soaked in cleaning solvent. Inspect the parts for wear or damage and replace as necessary. Most cleaning solvents are toxic and flammable. Use them only in a well ven- tilated area free from excessive heat, sparks, and flame. Read and follow all
precautions printed on solvent containers. Inspect the shaft for distortion, nicks or scratches, or for thread damage on the impeller end. Dress small nicks and burrs with a fine file or emery cloth. Replace the shaft if defective. Clean the bearings thoroughly in **fresh** cleaning solvent. Dry the bearings with filtered compressed air and coat with light oil. Rotate the bearings by hand to check for roughness or binding and inspect the bearing rollers. If rotation is rough or the rollers are discolored, replace the bearings. Bearings must be kept free of all dirt and foreign material. Failure to do so will greatly shorten bearing life. **Do not** spin dry bearings. This may scratch the rollers or races, and cause premature bearing failure. The bearing tolerances provide a tight press fit onto the shaft and a snug slip fit into the bearing housing. Replace the bearing cups or cones, the shaft, or intermediate if the proper bearing fit is not achieved. Pre-pack the bearings by hand (or use a bearing packer if available) with No. 0 lithium base grease until the bearing rollers are thoroughly lubricated. Position the inboard and outboard bearing cones (28 and 31) on the impeller shaft with the high side of the tapered roller bearings toward the lubrication cavity. Press the cones onto the shaft until seated squarely against the shaft shoulders. When installing the bearings onto the shaft, **never** press or hit against the rollers or roll cage. Press **only** on the inner race. Press the bearing closure (32) and inboard bearing cup (30) into the intermediate until seated squarely against the intermediate shoulder. When installing the shaft and bearings into the bearing bore, push against the outer race. **Never** hit the rollers or roll cage. Slide the shaft and assembled bearing cones into the intermediate bore until the inboard bearing cone (31) fully engages the inboard bearing cup. Press the outboard bearing cup (27) over the outboard bearing cone (28). Install the same thickness of bearing adjusting shims (21) as previously remove, and secure them with the bearing cap (26) and hardware (24 and 25). Check the shaft endplay. #### NOTE Shaft endplay should be between .003 and .005 inch (0,08 to 0,13mm). Add or remove bearing shims to establish the correct endplay. Lubricate the bearings as indicated in LUBRICA-TION at the end of this section. **Securing Intermediate And Drive Assembly To Engine** (Figure 3) Install the shaft key (22, Figure 2) in the shaft keyway. Position the flexible portion of the coupling assembly (3) on the shaft as shown in Figure 3. #### NOTE The flexible portion of the coupling must be properly positioned on the shaft. The heads of the capscrews in the center of the coupling must be positioned toward the pump end of the shaft. Align the keyway in the bushing (2) with the shaft key, and slide it onto the shaft until it is **just flush** with the end of the shaft. Rotate the flexible portion of the coupling until the tapped holes for the two setscrews align with those in the bushing, and install the setscrews. Make certain that the flexible portion of the coupling is mounted as shown in Figure 3. **This is critical.** If the coupling is not properly positioned on the shaft, the coupling parts may not fully engage, or a pre-load condition can cause premature bearing failure. The end of the shaft must be **just flush** with the face of the bushing. This will allow the two portions of the coupling to fully engage when the intermediate is secured to the engine bellhousing, without pre-loading the bearings. With the flexible portion of the coupling and the bushing properly positioned on the shaft, tighten the two setscrews in an alternating sequence until the bushing and coupling are fully secured. Torque the setscrews to 14.6 ft. lbs. (175 in. lbs. or 2,02 m. kg.). If the complete coupling assembly is being replaced, apply 'Loctite Retaining Compound No. 242' or equivalent to the threads of the hardware (4 and 5), and secure the outer ring of the coupling to the engine flywheel by torquing the hardware to 45 ft. lbs. (540 in. lbs. or 6,2 m. kg.). Using a suitable lifting device, position the intermediate (20, Figure 2) so the flexible portion of the coupling seats inside the outer ring attached to the engine flywheel. #### NOTE To ease installation, **lightly** lubricate the rubber portion of the coupling with a **non-petroleum based lubricant** such as vegetable oil or glycerin, or a silicon-based lubricant such as "WD40" or equivalent. **Do not** use petroleum-based lubricants, or any other substance which may soften or otherwise damage the rubber. Install the intermediate guards (29, Figure 2), and secure the intermediate to the engine bellhousing with the previously removed hardware (6 and 7). #### Seal Reassembly and Installation (Figures 2 and 4) Clean the seal cavity and shaft with a cloth soaked in fresh cleaning solvent. Most cleaning solvents are toxic and flammable. Use them only in a well ventilated area free from excessive heat, sparks, and flame. Read and follow all precautions printed on solvent containers. The seal is not normally reused because wear patterns on the finished faces cannot be realigned during reassembly. This could result in premature failure. If necessary to reuse an old seal in an emergency, **carefully** wash all metallic parts in **fresh** cleaning solvent and allow to dry thoroughly. Handle the seal parts with extreme care to prevent damage. Be careful not to contaminate precision finished faces; even fingerprints on the faces can shorten seal life. If necessary, clean the faces with a non-oil based solvent and a clean, lint-free tissue. Wipe **lightly** in a concentric pattern to avoid scratching the faces. Inspect the seal components for wear, scoring, grooves, and other damage that might cause leakage. Clean and polish the seal spacer sleeve, or replace it if there are nicks or cuts on either end. If any components are worn, replace the complete seal; never mix old and new seal parts. If a replacement seal is being used, remove it from the container and inspect the precision finished faces to ensure that they are free of any foreign matter. To ease installation of the seal, lubricate the packing rings and seal liner with water or a very **small** amount of oil, and apply a drop of light lubricating oil on the finished faces. Assemble the seal as follows, (see Figure 4). **80 SERIES** Figure 4. GS1250 Seal Assembly This seal is not designed for operation at temperatures above 110°F (43°C). Do not use at higher operating temperatures. Inspect the intermediate (20), seal liner (59) and impeller shaft for burrs or sharp corners, and remove any that exist. Replace the seal liner if wear or grooves exist which could cause leakage or damage to the seal packing rings. To replace the seal liner, position the seal plate (14) on the bed of an arbor (or hydraulic) press and use a new seal liner to press the old liner out. After the new liner is properly installed, a 1/4-inch diameter (6,4 mm) hole must be drilled through it to permit the flow of lubricant to the seal assembly. **Be careful** to center the drill in the threaded hole so not to damage the threads in the pump casing. Deburr the hole from the inside of the seal liner after drilling. Slide the seal plate onto the shaft until fully seated against the intermediate. Align the threaded seal lubricant hole with the intermediate opening, and temporarily secure the seal plate to the intermediate with two capscrews and nuts (1/2 UNC by 1 1/2 inch long, not supplied). Slide the seal spacer washer (58) onto the shaft with the chamfered side facing the shaft shoulder. Position the inboard rotating element on the shaft with the chamfered side facing the spacer washer, and slide it on until fully seated. Subassemble the inboard stationary seat, packing ring and spring washer. Press this subassembly into the lubricated seal liner. A push tube cut from a length of plastic pipe would aid this installation. The O.D. of the pipe should be approximately the same diameter as the O.D. of the seal spring. Install the spacer sleeve and spring. Subassemble the outboard stationary seat, packing ring and spring washer. Press this subassembly into the lubricated seal liner. PAGE E - 12 MAINTENANCE & REPAIR Install the outboard rotating element with the chamfered side facing the impeller. Reinstall the automatic grease cup and piping (15, 17 and 18) in the seal plate. After the impeller has been installed, lubricate the seal as indicated in LU-BRICATION. #### Impeller Installation #### (Figure 2) Inspect the impeller, and replace it if cracked or badly worn. Install the same thickness of impeller shims (57) as previously removed and screw the impeller onto the shaft until tight. The shaft and impeller threads **must** be completely clean before reinstalling the impeller. Even the slightest amount of dirt on the threads can cause the impeller to seize to the shaft, making future removal difficult or impossible without damage to the impeller or shaft. A clearance of .020 to .040 inch (0,5 to 1,0 mm) between the impeller and the seal plate is recommended for maximum pump efficiency. Measure this clearance and add or subtract impeller shims until it is reached. #### NOTE The seal plate must be tight against the intermediate while setting the back impeller clearance. #### Pump Casing and Wear Plate Installation #### (Figure 2) If the wear plate (35) was removed for replacement, secure the replacement wear plate to the pump casing with the hardware (37 and 38). Remove the two capscrews temporarily securing the seal plate, and install the same thickness of pump casing gaskets (13) as previously removed. Secure the pump casing to the seal plate and intermediate with the nuts (34). A clearance of .010 to .020 inch (0,3 to 0,5 mm) between the impeller and the wear plate is also recommended for maximum pump efficiency. This clearance can be
obtained by removing gaskets from the casing gasket set until the impeller scrapes against the wear plate when the shaft is turned. After the impeller scrapes, add approximately .010 inch (0,3 mm) of gaskets. #### NOTE An alternate method of adjusting this clearance is to reach through the discharge port and measure the clearance with a feeler gauge. Add or subtract pump casing gaskets until the proper impeller clearance is attained. #### (Figure 1) Reinstall any leveling shims used under the pump casing mounting feet and secure the casing (1) to the base (47) with the previously removed hardware (48, 49, 50 and 51). #### **Suction Check Valve Installation** #### (Figure 2) Inspect the check valve components and replace them as required. Subassemble the check valve weights (52 and 53) and gasket (51) using the attaching hardware (49 and 50). Install the check valve assembly in the valve seat (43). Replace the seat gasket (42) and secure the valve seat to the suction port using the round head machine screws (46). Replace the suction flange gasket (55) and secure the suction flange (54) to the seat with the nuts (45). Check the operation of the check valve to ensure proper seating and free movement. #### Final Pump Reassembly #### (Figure 1) Be sure the pump and intermediate are secure to the engine (11) and the base (47). Install the suction and discharge lines and open all valves. Make certain that all piping connections are tight, properly supported and secure. **Be sure** the pump and engine have been properly lubricated, see **LUBRICATION**. #### (Figure 2) Before starting the pump, remove the fill plug assembly (11) and fill the pump casing with clean liquid. Reinstall the fill plug and tighten. (see **OPERATION**, Section C). No. 2 lithium base grease until grease escapes from the relief hole. Turn the grease cup arm counterclockwise until it is at the top of the stem; this will release the spring to apply grease to the seal (see Figure 5). #### LUBRICATION #### **Seal Assembly** #### (Figure 2) Fill the grease cup (15) through the grease fitting with Figure 5. Automatic Lubricating Grease Cup #### **Bearings** #### (Figure 2) The intermediate was fully lubricated when shipped from the factory. Under normal conditions, turn the cap on the grease cup (19) three complete turns to add No. 0 lithium base grease to the intermediate after each 250 hours of operation or once each month, whichever comes first. **Do not** over-lubricate. Over-lubrication can cause the bearings to over-heat, resulting in premature bearing failure. If grease is forced out around the shaft as new grease is added, the bearing cavity is full and should be disassembled and cleaned immediately. There are no provisions in the bearing cavity to drain or flush the lubricant. The pump and intermediate must be disassembled to completely clean and maintain this cavity. Under normal conditions, change the grease after each 5000 hours of operation, or at 12 month intervals, whichever comes first. Change the grease more frequently if the pump is operated continuously or installed in an environment where variable hot and cold temperatures are common. When lubricating a dry (overhauled) intermediate, fill the cavity through the grease cup with approximately one-third of a pound (151 gm) of grease (approximately one-third full). For cold weather operation, consult the factory or a lubricant supplier for the recommended grade of lubricant. #### **Engine** Consult the literature supplied with the engine, or contact your local Deutz engine representative. # For U.S. and International Warranty Information, Please Visit www.grpumps.com/warranty or call: U.S.: 419-755-1280 International: +1-419-755-1352 For Canadian Warranty Information, Please Visit www.grcanada.com/warranty or call: 519-631-2870